3.5.28 \(\int \frac {(a+b x^2)^p}{x (d+e x)^3} \, dx\) [428]

Optimal. Leaf size=700 \[ \frac {d e^2 \left (a+b x^2\right )^{1+p}}{4 \left (b d^2+a e^2\right ) \left (d^2-e^2 x^2\right )^2}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,1;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,2;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,3;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {3}{2};-p,2;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{3 d^6}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {3}{2};-p,3;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^6}+\frac {e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 d^3 \left (b d^2+a e^2\right ) (1+p)}-\frac {\left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac {b x^2}{a}\right )}{2 a d^3 (1+p)}+\frac {b e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (2,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{d \left (b d^2+a e^2\right )^2 (1+p)}-\frac {b e^2 \left (2 a e^2+b d^2 (1+p)\right ) \left (a+b x^2\right )^{1+p} \, _2F_1\left (2,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{4 d \left (b d^2+a e^2\right )^3 (1+p)}+\frac {3 b^2 d e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (3,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 \left (b d^2+a e^2\right )^3 (1+p)} \]

[Out]

1/4*d*e^2*(b*x^2+a)^(1+p)/(a*e^2+b*d^2)/(-e^2*x^2+d^2)^2-e*x*(b*x^2+a)^p*AppellF1(1/2,1,-p,3/2,e^2*x^2/d^2,-b*
x^2/a)/d^4/((1+b*x^2/a)^p)-e*x*(b*x^2+a)^p*AppellF1(1/2,2,-p,3/2,e^2*x^2/d^2,-b*x^2/a)/d^4/((1+b*x^2/a)^p)-e*x
*(b*x^2+a)^p*AppellF1(1/2,3,-p,3/2,e^2*x^2/d^2,-b*x^2/a)/d^4/((1+b*x^2/a)^p)-1/3*e^3*x^3*(b*x^2+a)^p*AppellF1(
3/2,2,-p,5/2,e^2*x^2/d^2,-b*x^2/a)/d^6/((1+b*x^2/a)^p)-e^3*x^3*(b*x^2+a)^p*AppellF1(3/2,3,-p,5/2,e^2*x^2/d^2,-
b*x^2/a)/d^6/((1+b*x^2/a)^p)+1/2*e^2*(b*x^2+a)^(1+p)*hypergeom([1, 1+p],[2+p],e^2*(b*x^2+a)/(a*e^2+b*d^2))/d^3
/(a*e^2+b*d^2)/(1+p)-1/2*(b*x^2+a)^(1+p)*hypergeom([1, 1+p],[2+p],1+b*x^2/a)/a/d^3/(1+p)+b*e^2*(b*x^2+a)^(1+p)
*hypergeom([2, 1+p],[2+p],e^2*(b*x^2+a)/(a*e^2+b*d^2))/d/(a*e^2+b*d^2)^2/(1+p)-1/4*b*e^2*(2*a*e^2+b*d^2*(1+p))
*(b*x^2+a)^(1+p)*hypergeom([2, 1+p],[2+p],e^2*(b*x^2+a)/(a*e^2+b*d^2))/d/(a*e^2+b*d^2)^3/(1+p)+3/2*b^2*d*e^2*(
b*x^2+a)^(1+p)*hypergeom([3, 1+p],[2+p],e^2*(b*x^2+a)/(a*e^2+b*d^2))/(a*e^2+b*d^2)^3/(1+p)

________________________________________________________________________________________

Rubi [A]
time = 0.54, antiderivative size = 700, normalized size of antiderivative = 1.00, number of steps used = 29, number of rules used = 12, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {975, 272, 67, 771, 441, 440, 455, 70, 525, 524, 457, 79} \begin {gather*} -\frac {e^3 x^3 \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} F_1\left (\frac {3}{2};-p,2;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{3 d^6}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} F_1\left (\frac {3}{2};-p,3;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^6}-\frac {e x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} F_1\left (\frac {1}{2};-p,1;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} F_1\left (\frac {1}{2};-p,2;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (\frac {b x^2}{a}+1\right )^{-p} F_1\left (\frac {1}{2};-p,3;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}+\frac {3 b^2 d e^2 \left (a+b x^2\right )^{p+1} \, _2F_1\left (3,p+1;p+2;\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 (p+1) \left (a e^2+b d^2\right )^3}-\frac {\left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac {b x^2}{a}+1\right )}{2 a d^3 (p+1)}-\frac {b e^2 \left (a+b x^2\right )^{p+1} \left (2 a e^2+b d^2 (p+1)\right ) \, _2F_1\left (2,p+1;p+2;\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{4 d (p+1) \left (a e^2+b d^2\right )^3}+\frac {b e^2 \left (a+b x^2\right )^{p+1} \, _2F_1\left (2,p+1;p+2;\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{d (p+1) \left (a e^2+b d^2\right )^2}+\frac {d e^2 \left (a+b x^2\right )^{p+1}}{4 \left (d^2-e^2 x^2\right )^2 \left (a e^2+b d^2\right )}+\frac {e^2 \left (a+b x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;\frac {e^2 \left (b x^2+a\right )}{b d^2+a e^2}\right )}{2 d^3 (p+1) \left (a e^2+b d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^p/(x*(d + e*x)^3),x]

[Out]

(d*e^2*(a + b*x^2)^(1 + p))/(4*(b*d^2 + a*e^2)*(d^2 - e^2*x^2)^2) - (e*x*(a + b*x^2)^p*AppellF1[1/2, -p, 1, 3/
2, -((b*x^2)/a), (e^2*x^2)/d^2])/(d^4*(1 + (b*x^2)/a)^p) - (e*x*(a + b*x^2)^p*AppellF1[1/2, -p, 2, 3/2, -((b*x
^2)/a), (e^2*x^2)/d^2])/(d^4*(1 + (b*x^2)/a)^p) - (e*x*(a + b*x^2)^p*AppellF1[1/2, -p, 3, 3/2, -((b*x^2)/a), (
e^2*x^2)/d^2])/(d^4*(1 + (b*x^2)/a)^p) - (e^3*x^3*(a + b*x^2)^p*AppellF1[3/2, -p, 2, 5/2, -((b*x^2)/a), (e^2*x
^2)/d^2])/(3*d^6*(1 + (b*x^2)/a)^p) - (e^3*x^3*(a + b*x^2)^p*AppellF1[3/2, -p, 3, 5/2, -((b*x^2)/a), (e^2*x^2)
/d^2])/(d^6*(1 + (b*x^2)/a)^p) + (e^2*(a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, (e^2*(a + b*x^2))
/(b*d^2 + a*e^2)])/(2*d^3*(b*d^2 + a*e^2)*(1 + p)) - ((a + b*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1
 + (b*x^2)/a])/(2*a*d^3*(1 + p)) + (b*e^2*(a + b*x^2)^(1 + p)*Hypergeometric2F1[2, 1 + p, 2 + p, (e^2*(a + b*x
^2))/(b*d^2 + a*e^2)])/(d*(b*d^2 + a*e^2)^2*(1 + p)) - (b*e^2*(2*a*e^2 + b*d^2*(1 + p))*(a + b*x^2)^(1 + p)*Hy
pergeometric2F1[2, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(4*d*(b*d^2 + a*e^2)^3*(1 + p)) + (3*b^2*
d*e^2*(a + b*x^2)^(1 + p)*Hypergeometric2F1[3, 1 + p, 2 + p, (e^2*(a + b*x^2))/(b*d^2 + a*e^2)])/(2*(b*d^2 + a
*e^2)^3*(1 + p))

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 70

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 441

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 455

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 771

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + c*x^2)^p, (d/(d
^2 - e^2*x^2) - e*(x/(d^2 - e^2*x^2)))^(-m), x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&
!IntegerQ[p] && ILtQ[m, 0]

Rule 975

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIn
tegrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] &&
NeQ[c*d^2 + a*e^2, 0] && (IntegerQ[p] || (ILtQ[m, 0] && ILtQ[n, 0])) &&  !(IGtQ[m, 0] || IGtQ[n, 0])

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^p}{x (d+e x)^3} \, dx &=\int \left (\frac {\left (a+b x^2\right )^p}{d^3 x}-\frac {e \left (a+b x^2\right )^p}{d (d+e x)^3}-\frac {e \left (a+b x^2\right )^p}{d^2 (d+e x)^2}-\frac {e \left (a+b x^2\right )^p}{d^3 (d+e x)}\right ) \, dx\\ &=\frac {\int \frac {\left (a+b x^2\right )^p}{x} \, dx}{d^3}-\frac {e \int \frac {\left (a+b x^2\right )^p}{d+e x} \, dx}{d^3}-\frac {e \int \frac {\left (a+b x^2\right )^p}{(d+e x)^2} \, dx}{d^2}-\frac {e \int \frac {\left (a+b x^2\right )^p}{(d+e x)^3} \, dx}{d}\\ &=\frac {\text {Subst}\left (\int \frac {(a+b x)^p}{x} \, dx,x,x^2\right )}{2 d^3}-\frac {e \int \left (\frac {d \left (a+b x^2\right )^p}{d^2-e^2 x^2}+\frac {e x \left (a+b x^2\right )^p}{-d^2+e^2 x^2}\right ) \, dx}{d^3}-\frac {e \int \left (\frac {d^2 \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^2}-\frac {2 d e x \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^2}+\frac {e^2 x^2 \left (a+b x^2\right )^p}{\left (-d^2+e^2 x^2\right )^2}\right ) \, dx}{d^2}-\frac {e \int \left (\frac {d^3 \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^3}-\frac {3 d^2 e x \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^3}+\frac {3 d e^2 x^2 \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^3}+\frac {e^3 x^3 \left (a+b x^2\right )^p}{\left (-d^2+e^2 x^2\right )^3}\right ) \, dx}{d}\\ &=-\frac {\left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac {b x^2}{a}\right )}{2 a d^3 (1+p)}-e \int \frac {\left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^2} \, dx-\frac {e \int \frac {\left (a+b x^2\right )^p}{d^2-e^2 x^2} \, dx}{d^2}-\left (d^2 e\right ) \int \frac {\left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^3} \, dx-\frac {e^2 \int \frac {x \left (a+b x^2\right )^p}{-d^2+e^2 x^2} \, dx}{d^3}+\frac {\left (2 e^2\right ) \int \frac {x \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^2} \, dx}{d}+\left (3 d e^2\right ) \int \frac {x \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^3} \, dx-\left (3 e^3\right ) \int \frac {x^2 \left (a+b x^2\right )^p}{\left (d^2-e^2 x^2\right )^3} \, dx-\frac {e^3 \int \frac {x^2 \left (a+b x^2\right )^p}{\left (-d^2+e^2 x^2\right )^2} \, dx}{d^2}-\frac {e^4 \int \frac {x^3 \left (a+b x^2\right )^p}{\left (-d^2+e^2 x^2\right )^3} \, dx}{d}\\ &=-\frac {\left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac {b x^2}{a}\right )}{2 a d^3 (1+p)}-\frac {e^2 \text {Subst}\left (\int \frac {(a+b x)^p}{-d^2+e^2 x} \, dx,x,x^2\right )}{2 d^3}+\frac {e^2 \text {Subst}\left (\int \frac {(a+b x)^p}{\left (d^2-e^2 x\right )^2} \, dx,x,x^2\right )}{d}+\frac {1}{2} \left (3 d e^2\right ) \text {Subst}\left (\int \frac {(a+b x)^p}{\left (d^2-e^2 x\right )^3} \, dx,x,x^2\right )-\frac {e^4 \text {Subst}\left (\int \frac {x (a+b x)^p}{\left (-d^2+e^2 x\right )^3} \, dx,x,x^2\right )}{2 d}-\left (e \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p}\right ) \int \frac {\left (1+\frac {b x^2}{a}\right )^p}{\left (d^2-e^2 x^2\right )^2} \, dx-\frac {\left (e \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p}\right ) \int \frac {\left (1+\frac {b x^2}{a}\right )^p}{d^2-e^2 x^2} \, dx}{d^2}-\left (d^2 e \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p}\right ) \int \frac {\left (1+\frac {b x^2}{a}\right )^p}{\left (d^2-e^2 x^2\right )^3} \, dx-\left (3 e^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p}\right ) \int \frac {x^2 \left (1+\frac {b x^2}{a}\right )^p}{\left (d^2-e^2 x^2\right )^3} \, dx-\frac {\left (e^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p}\right ) \int \frac {x^2 \left (1+\frac {b x^2}{a}\right )^p}{\left (-d^2+e^2 x^2\right )^2} \, dx}{d^2}\\ &=\frac {d e^2 \left (a+b x^2\right )^{1+p}}{4 \left (b d^2+a e^2\right ) \left (d^2-e^2 x^2\right )^2}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,1;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,2;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,3;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {3}{2};-p,2;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{3 d^6}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {3}{2};-p,3;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^6}+\frac {e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 d^3 \left (b d^2+a e^2\right ) (1+p)}-\frac {\left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac {b x^2}{a}\right )}{2 a d^3 (1+p)}+\frac {b e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (2,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{d \left (b d^2+a e^2\right )^2 (1+p)}+\frac {3 b^2 d e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (3,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 \left (b d^2+a e^2\right )^3 (1+p)}-\frac {\left (e^2 \left (2 a e^2+b d^2 (1+p)\right )\right ) \text {Subst}\left (\int \frac {(a+b x)^p}{\left (-d^2+e^2 x\right )^2} \, dx,x,x^2\right )}{4 d \left (b d^2+a e^2\right )}\\ &=\frac {d e^2 \left (a+b x^2\right )^{1+p}}{4 \left (b d^2+a e^2\right ) \left (d^2-e^2 x^2\right )^2}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,1;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,2;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e x \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {1}{2};-p,3;\frac {3}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^4}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {3}{2};-p,2;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{3 d^6}-\frac {e^3 x^3 \left (a+b x^2\right )^p \left (1+\frac {b x^2}{a}\right )^{-p} F_1\left (\frac {3}{2};-p,3;\frac {5}{2};-\frac {b x^2}{a},\frac {e^2 x^2}{d^2}\right )}{d^6}+\frac {e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 d^3 \left (b d^2+a e^2\right ) (1+p)}-\frac {\left (a+b x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1+\frac {b x^2}{a}\right )}{2 a d^3 (1+p)}+\frac {b e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (2,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{d \left (b d^2+a e^2\right )^2 (1+p)}-\frac {b e^2 \left (2 a e^2+b d^2 (1+p)\right ) \left (a+b x^2\right )^{1+p} \, _2F_1\left (2,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{4 d \left (b d^2+a e^2\right )^3 (1+p)}+\frac {3 b^2 d e^2 \left (a+b x^2\right )^{1+p} \, _2F_1\left (3,1+p;2+p;\frac {e^2 \left (a+b x^2\right )}{b d^2+a e^2}\right )}{2 \left (b d^2+a e^2\right )^3 (1+p)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.72, size = 434, normalized size = 0.62 \begin {gather*} \frac {\left (a+b x^2\right )^p \left (-\frac {2 d \left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (1-2 p;-p,-p;2-2 p;\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )}{(-1+2 p) (d+e x)}-\frac {d^2 \left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (2-2 p;-p,-p;3-2 p;\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )}{(-1+p) (d+e x)^2}+\frac {-\left (\frac {e \left (-\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} \left (\frac {e \left (\sqrt {-\frac {a}{b}}+x\right )}{d+e x}\right )^{-p} F_1\left (-2 p;-p,-p;1-2 p;\frac {d-\sqrt {-\frac {a}{b}} e}{d+e x},\frac {d+\sqrt {-\frac {a}{b}} e}{d+e x}\right )+\left (1+\frac {a}{b x^2}\right )^{-p} \, _2F_1\left (-p,-p;1-p;-\frac {a}{b x^2}\right )}{p}\right )}{2 d^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^p/(x*(d + e*x)^3),x]

[Out]

((a + b*x^2)^p*((-2*d*AppellF1[1 - 2*p, -p, -p, 2 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/
(d + e*x)])/((-1 + 2*p)*((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p*(d + e*x))
- (d^2*AppellF1[2 - 2*p, -p, -p, 3 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/(d + e*x)])/((-
1 + p)*((e*(-Sqrt[-(a/b)] + x))/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p*(d + e*x)^2) + (-(AppellF1[-
2*p, -p, -p, 1 - 2*p, (d - Sqrt[-(a/b)]*e)/(d + e*x), (d + Sqrt[-(a/b)]*e)/(d + e*x)]/(((e*(-Sqrt[-(a/b)] + x)
)/(d + e*x))^p*((e*(Sqrt[-(a/b)] + x))/(d + e*x))^p)) + Hypergeometric2F1[-p, -p, 1 - p, -(a/(b*x^2))]/(1 + a/
(b*x^2))^p)/p))/(2*d^3)

________________________________________________________________________________________

Maple [F]
time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (b \,x^{2}+a \right )^{p}}{x \left (e x +d \right )^{3}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^p/x/(e*x+d)^3,x)

[Out]

int((b*x^2+a)^p/x/(e*x+d)^3,x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x/(e*x+d)^3,x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)^p/((x*e + d)^3*x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x/(e*x+d)^3,x, algorithm="fricas")

[Out]

integral((b*x^2 + a)^p/(x^4*e^3 + 3*d*x^3*e^2 + 3*d^2*x^2*e + d^3*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b x^{2}\right )^{p}}{x \left (d + e x\right )^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**p/x/(e*x+d)**3,x)

[Out]

Integral((a + b*x**2)**p/(x*(d + e*x)**3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^p/x/(e*x+d)^3,x, algorithm="giac")

[Out]

integrate((b*x^2 + a)^p/((x*e + d)^3*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,x^2+a\right )}^p}{x\,{\left (d+e\,x\right )}^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^p/(x*(d + e*x)^3),x)

[Out]

int((a + b*x^2)^p/(x*(d + e*x)^3), x)

________________________________________________________________________________________